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Outline
1. From “any” Digital or Analog system

to a Chemical Reaction Network

2. From (made-up) Chemical Reaction Networks 
to (real) Molecules that implement them
(skipped)

3. Languages for Chemical Reaction Networks



Part 1

From (almost) any algorithm
and (almost) any dynamical system
to a Chemical Reaction Network



Chemical Reaction Networks (CRN)

X + Y  ->r Z + W
 A phenomenological model of kinetics in the natural sciences

By (only) observing naturally occurring reactions

 A programming language, finitely encoded in the genome 
By which living things manage the unbounded processing of matter and information

 A mathematical structure, rediscovered in many forms
Vector Addition Systems, Petri Nets, Bounded Context-Free Languages, Population Protocols, …

 A description of mechanism (“instructions” / “interactions”) 
rather than behavior (“equations” / “approximations”)

Although the two are related in precise ways
Enabling, e.g., the study of the evolution of mechanism through unchanging behavior
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Part 1a

“Digital” computation = algorithms



Programming Examples
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Y := 2X X -> Y + Y

Y := X1 + X2 X1 -> Y 
X2 -> Y

Y := min(X1, X2) X1 + X2 -> Y

Y := X/2 X + X -> Y

spec program



Advanced Programming Examples
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Y := max(X1, X2) X1 -> L1 + Y
X2 -> L2 + Y
L1 + L2 -> K
Y + K -> 0

max(X1,X2)=
(X1+X2)-min(X1,X2)

(but is not computed 
“sequentially”)

(X,Y) :=
if XY then (X+Y, 0) 
if YX then (0, X+Y)

Approximate Majority

X + Y -> Y + B
Y + X -> X + B
B + X -> X + X
B + Y -> Y + Y

spec program



CRN Semantics (discrete state space)*
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 No-time (concurrent) semantics
 Ignore rates. The multisets of molecules are rewritten according to the reactions, which may 

fire concurrently when not in resource conflict. This results in a Petri Net.

 Discrete time semantics
 Reaction rates determine the probability with which reactions fire at discrete time intervals, 

then they behave as multiset rewrites at each discrete time interval. 
This results in a Discrete Time Markov Chain (DTMC).

 Continuous time semantics of CRNs
 Reaction rates determine the propensity with which reactions fire (both the probability of firing 

and the inter-firing intervals), then they behave as multiset rewrites. 
This results in a Continuous Time Markov Chain (CTMC).

 These CRNs are called FSCRN (finite stochastic CRN).

*Discrete state space means that each chemical species has a number of molecules (a nonnegative integer); 
then time can be modeled as one of the above.



Programming any algorithm as a FSCRN
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A FSCRN is a finite set of reactions over a finite set of species

FSCRNs are not Turing complete
Like Petri nets: reachability is decidable

But unlike Petri nets, FSCRNs are approximately Turing complete
Because reactions have also rates
This make it possible to approximate Turing completeness by approximating test-for-zero in a register machine. 
The probability of error (in test-for-zero) can be made arbitrarily small over the entire (undecidably long) computation.

Adding polymerization to the model makes it fully Turing complete
but the syntax becomes considerably more complex

“approximately”



Register Machines (almost…)
PCi -> R1 + PCj

PCi + R1 -> PCj

PCi + R2 -> R2 + R1 + PCj
???  Whatever trick we use will have some error
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i: INC R1; JMP j

i: DEC R1; JMP j

i: IF R2>0 {INC R1; JMP j}

i: IF R2=0 …

 Turing-complete up to an arbitrarily small error
 The error bound is set in advance uniformly for any computation of arbitrary length 

(because we cannot know how long the computation will last), and the machine will 
progressively “slow down” to always stay below that bound.



CRN Semantics (continuous state space/deterministic)*
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 ODE semantics of CRNs
 The chemical Law of Mass Action says that the flux of a reaction is determined by 

the product of the concentrations of the reagents, times the reaction rate.

State produced by a CRN (species      , reactions      ) 
with flux        (r.h.s. of its mass action ODEs) at time t, 
from initial state                       (initial concentrations x0, volume V, temperature T): 

Law of Mass Action makes up the r.h.s. of an ODE system    ∂ =    

*Continuous state space means each chemical species has a concentration (a real number);
concentrations are approximations of the number of molecules via the Avogadro constant. 



CRN Semantics (continuous state space/stochastic)*
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 CME semantics of CRNs   (Chemical Master Equation)
 Kolmogorov forward equation of the Markov Chain produced by the CRN.
 Unfeasible to solve or even simulate (to compute the distribution of outcomes)
 The Gillespie algorithm produces individual samples (traces) of the CME distribution

 LNA semantics of CRNs    (Linear Noise Approximation)
Gaussian state (mean & variance) produced by a CRN                               (species      , reactions      ) 
with flux        (r.h.s. of its mass action ODEs) at time t, 

*Continuous state space means each species has a concentration (a real number);
concentrations are an approximation of the number of molecules via the Avogadro constant. 



Chemistry as a Concurrent Language
 A connection with the theory of concurrency

 Via Process Algebra and Petri Nets
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Finally, Some Bad Bad Programs
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X -> X + X
Violates conservation of mass. 
(No biggie, assume there is inflow/outflow.) 

X + X -> X + X + X
Violates finite density. 
(This is really bad.)

X -> Y
Violates thermodynamics. 
(No biggie, assume there is a tiny reverse reaction.) 



Part 1b

“Analog” computation = dynamical system



“Elementary” (NOT!) dynamical systems
A dynamical systems is anything characterized by a system of differential equations (ODEs).
Elementary dynamical systems are those that include on the r.h.s. only
polynomials, trigonometry, exponentials, fractions, and their inverses. 

E.g., physics: the equation of the simple pendulum has trigonometry on the r.h.s.:
∂2θ = -g/l sin(θ)

E.g., biology: the enzyme kinetics equation has fractions on the r.h.s.:
∂[P] = Vmax [S] / (KM + [S])

E.g., metereology: the chaotic Lorenz attractor has just 3 polynomial equations:
∂x = ay – ax         ∂y = cx – xz – y           ∂z = xy - bz

E.g., chemistry: the law of mass action for CRNs implies that their ODEs are
(a restricted “Hungarian” class) of polynomials

STEP 1, Polynomization: All elementary ODEs can be exactly reduced to polynomial ODEs.
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https://en.wikipedia.org/wiki/Pendulum

Galileo Galilei 1602
Christiaan Huygens 1673



Programming any dynamical system as a CRN
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Consider the canonical polynomial oscillator: sine/cosine

∂s = c
∂c = -s

let s = (s⁺ - s⁻) 
let c = (c⁺ - c⁻)

Positivation

∂s⁺ = c⁺
∂s⁻ = c⁻
∂c⁺ = s⁻
∂c⁻ = s⁺

∂ (s⁺ - s⁻) = (c⁺ - c⁻) 
∂ (c⁺ - c⁻) = -(s⁺ - s⁻)

Re
na

m
in

g

s⁺0=max(0,s0)
s⁻0= max(0,-s0)
c⁺0= max(0,c0)
c⁻0= max(0,-c0)

“elementary”

A very simple elementary ODE system.

But variables go negative: we can’t have that in a CRN (no negative concentrations).

STEP 2, Positivation: Split potentially negative variables of polynomial ODEs into the 
difference of two positive variables. Obtain the same trajectories as differences.



Programming any dynamical system as a CRN
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Translate positive ODEs to chemical reactions

s⁻ -> s⁻ + c⁺ 
s⁺ -> s⁺ + c⁻
c⁺ -> c⁺ + s⁺ 
c⁻ -> c⁻ + s⁻ 

∂s⁺ = c⁺
∂s⁻ = c⁻
∂c⁺ = s⁻
∂c⁻ = s⁺

Hungarization

Mass Action

“elementary”

The Law of Mass Action tells us how to produce polynomial ODEs from CRNs.
The inverse process is called Hungarization, it works for Hungarian ODEs 
(polynomial ODEs where each negative monomial has the l.h.s. differentiated variable as a factor).

STEP 3, Hungarization: Translate polynomial ODEs to chemical reaction networks: 
each monomial on the r.h.s. produces one reaction.

Subject to the ODEs being Hungarian, but that is always satisfied after positivation!

E.g. the Lorenz chaotic attractor is already polynomial but not Hungarian, 
it cannot be translated to mass action reactions without first doing positivation.



Programming any dynamical system as a CRN
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Translate those CNRs to (real, DNA) molecules

s⁻ -> s⁻ + c⁺ 
s⁺ -> s⁺ + c⁻
c⁺ -> c⁺ + s⁺ 
c⁻ -> c⁻ + s⁻ 

DNA compilation

Chemistry

“elementary”

Chemistry tells us (sometimes) what reactions molecules obey.
The inverse process is possible for DNA molecules, because we can “program” them.

STEP 4, Molecular programming: Translate any mass action chemical reaction network 
into a set of DNA molecules that obey those reactions.

Works up to an arbitrarily good approximation of Mass Action kinetics, 
and up to time rescaling.



Programming any dynamical system as a CRN
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Thus, CNRs are “Shannon complete”, and can by physically realized

∂s = c
∂c = -s

s⁻ -> s⁻ + c⁺ 
s⁺ -> s⁺ + c⁻
c⁺ -> c⁺ + s⁺ 
c⁻ -> c⁻ + s⁻ 

s⁺ + s⁻ -> Ø 
c⁺ + c⁻ -> Ø 

let s = (s⁺ - s⁻) 
let c = (c⁺ - c⁻)

Positivation

∂s⁺ = c⁺
∂s⁻ = c⁻
∂c⁺ = s⁻
∂c⁻ = s⁺

Linearity
∂ (s⁺ - s⁻) = (c⁺ - c⁻) 
∂ (c⁺ - c⁻) = -(s⁺ - s⁻)

Re
na

m
in

g

(Optional)

∂ s⁺ = c⁺ - s⁻ · s⁺
∂ s⁻ = c⁻ - s⁻ · s⁺
∂ c⁺ = s⁻ - c⁻ · c⁺
∂ c⁻ = s⁺ - c⁻ · c⁺

s⁺0=max(0,s0)
s⁻0= max(0,-s0)
c⁺0= max(0,c0)
c⁻0= max(0,-c0)

Hungarization DNA compilation

(1)
2 3 4

Chemistry

“elementary”



Summarizing
 Chemistry is (also) a formal language that we can use to 

implement any algorithm and any dynamical system with real
(DNA) molecules

 Turing complete and “Shannon complete”

 ANY collection of abstract chemical reactions
can be implemented with specially designed DNA 
molecules, with accurate kinetics (up to time scaling).

 Approaching a situation where we can "systematically compile" 
(synthesize) a model to DNA molecules, run an (automated) 
protocol, and observe (sequence) the results in a closed  loop.
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Part 3

Languages for CRNs



Obviously…
Yes of course, there are CRN packages in Python, Matlab, Mathematica, etc. etc.

Yes of course, there are scripting languages, and even operating systems, for all 
kinds of lab equipment and for Digital Microfluidics, like PurpleDrop [Stephenson et 
al. 2020]

Yes of course, there are domain specific languages like CRN++ [Vasic et al. 2018]

I wanted to investigate “closing the loop” between mathematical modeling and lab 
protocols, based on a language for CRNs.
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An integrated language for
chemical models & experimental protocols
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Deterministic (ODE) and
stochastic (LNA) simulation

Chemical reaction networks (CRNs)
and liquid-handling protocols

Reaction scores

Functional scripting

GUI
Search "Kaemika" in the app stores
http://lucacardelli.name/kaemika.html

CMSB'2020 Best Tool Paper Award



Main features
 Species and reactions

 Characterized by initial values and rates

 “Samples” (compartments) and Protocols
 Isolate species and reactions in a compartment, and mix compartments 

 Kinetics (simulation)
 Deterministic (ODE) or stochastic (LNA) for chemical models
 Digital microfluidics for chemical protocols

 Programming abstractions
 Assemble models and protocols as compositions of modules 
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Species and Reactions
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//======================================
// Lotka 1920, Volterra 1926
// (simplified with all rates = 1)
//======================================

number x1₀ <- uniform(0,1) // random x1₀
number x2₀ <- uniform(0,1) // random x2₀

species x1 @ x1₀ M      // prey
species x2 @ x2₀ M      // predator

x1 -> x1 + x1       {1} // prey reproduces
x1 + x2 -> x2 + x2  {1} // predator eats prey
x2 -> Ø             {1} // predator dies

equilibrate for 40

<= Demo: LotkaVolterra



Stochastic (LNA) simulation
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 For all programs (any CRN, any Protocol)

∂lo1 = - hi1 · lo1 - 0.5 · hi2 · lo1 + lo1 · md + 0.5 · lo2 · md
∂hi2 = -0.5 · hi1 · hi2 - hi2 · lo2 + hi2 · md»₁ + 0.5 · lo1 · md»₁
∂lo2 = 0.5 · hi1 · md»₁ - hi2 · lo2 - 0.5 · lo1 · lo2 + lo2 · md»₁
∂hi1 = - hi1 · lo1 - 0.5 · hi1 · lo2 + hi1 · md + 0.5 · hi2 · md
∂md = 2 · hi1 · lo1 + 0.5 · hi1 · lo2 + 0.5 · hi2 · lo1 - hi1 · md - 0.5 · hi2 · md - lo1 · md - 0.5 · lo2 · md
∂md»₁ = 0.5 · hi1 · hi2 - 0.5 · hi1 · md»₁ + 2 · hi2 · lo2 + 0.5 · lo1 · lo2 - hi2 · md»₁ - 0.5 · lo1 · md»₁ - lo2 · md»₁

∂var(lo1) = - cov(hi1,lo1) · lo1 - 0.5 · cov(hi2,lo1) · lo1 - cov(lo1,hi1) · lo1 - 0.5 · cov(lo1,hi2) · lo1 + cov(lo1,md) · lo1 + hi1 · lo1 + 0.5 · hi2 · lo1 + 0.5 · cov(lo1,md) · lo2 + cov(md,lo1) · lo1 + 0.5 · 
cov(md,lo1) · lo2 + 0.5 · cov(lo1,lo2) · md + 0.5 · cov(lo2,lo1) · md + lo1 · md + 0.5 · lo2 · md - 2 · hi1 · var(lo1) - hi2 · var(lo1) + 2 · md · var(lo1)

∂cov(lo1,hi2) = cov(lo1,md»₁) · hi2 - 0.5 · cov(lo1,hi1) · hi2 - cov(hi1,hi2) · lo1 - 1.5 · cov(lo1,hi2) · hi1 - 0.5 · cov(lo1,hi2) · hi2 - cov(lo1,lo2) · hi2 + 0.5 · cov(lo1,md»₁) · lo1 + cov(md,hi2) · lo1 -
cov(lo1,hi2) · lo2 + 0.5 · cov(md,hi2) · lo2 + cov(lo1,hi2) · md + 0.5 · cov(lo2,hi2) · md + cov(lo1,hi2) · md»₁ - 0.5 · lo1 · var(hi2) + 0.5 · md»₁ · var(lo1)

∂cov(lo1,lo2) = 0.5 · cov(lo1,md»₁) · hi1 - cov(hi1,lo2) · lo1 - 0.5 · cov(hi2,lo2) · lo1 + cov(lo1,md»₁) · lo2 + cov(md,lo2) · lo1 + 0.5 · cov(md,lo2) · lo2 + 0.5 · cov(lo1,hi1) · md»₁ - 0.5 · cov(lo1,lo2) · 
lo1 - cov(lo1,hi2) · lo2 - cov(lo1,lo2) · hi1 - 1.5 · cov(lo1,lo2) · hi2 + cov(lo1,lo2) · md + cov(lo1,lo2) · md»₁ - 0.5 · lo2 · var(lo1) + 0.5 · md · var(lo2)

∂cov(lo1,hi1) = cov(lo1,md) · hi1 + 0.5 · cov(lo1,md) · hi2 - cov(lo1,hi1) · lo1 + cov(md,hi1) · lo1 - 0.5 · cov(lo1,hi1) · lo2 - 0.5 · cov(lo1,lo2) · hi1 - 0.5 · cov(hi2,hi1) · lo1 - cov(lo1,hi1) · hi1 - 0.5 · 
cov(lo1,hi1) · hi2 + 0.5 · cov(md,hi1) · lo2 + 2 · cov(lo1,hi1) · md + 0.5 · cov(lo1,hi2) · md + 0.5 · cov(lo2,hi1) · md - lo1 · var(hi1) - hi1 · var(lo1)

∂cov(lo1,md) = 2 · cov(lo1,hi1) · lo1 - cov(hi1,md) · lo1 - cov(lo1,md) · lo1 - hi1 · lo1 - 0.5 · hi2 · lo1 + 0.5 · cov(lo1,hi1) · lo2 - 0.5 · cov(lo1,md) · lo2 - cov(lo1,hi1) · md + 0.5 · cov(lo1,lo2) · hi1 - 0.5 
· cov(hi2,md) · lo1 + 0.5 · cov(lo1,hi2) · lo1 - 0.5 · cov(lo1,hi2) · md - 0.5 · cov(lo1,lo2) · md - 2 · cov(lo1,md) · hi1 - cov(lo1,md) · hi2 + cov(lo1,md) · md + 0.5 · cov(lo2,md) · md - lo1 · md - 0.5 · lo2 
· md + 2 · hi1 · var(lo1) + 0.5 · hi2 · var(lo1) + lo1 · var(md) + 0.5 · lo2 · var(md) - md · var(lo1)

∂cov(lo1,md»₁) = 0.5 · cov(lo1,hi1) · hi2 - cov(hi1,md»₁) · lo1 - 0.5 · cov(lo1,md»₁) · lo1 - cov(lo1,md»₁) · lo2 + cov(md,md»₁) · lo1 + 0.5 · cov(md,md»₁) · lo2 - 0.5 · cov(lo1,hi1) · md»₁ + 0.5 · 
cov(lo1,hi2) · hi1 + 2 · cov(lo1,lo2) · hi2 - 0.5 · cov(hi2,md»₁) · lo1 + 0.5 · cov(lo1,lo2) · lo1 + 2 · cov(lo1,hi2) · lo2 - cov(lo1,lo2) · md»₁ + 0.5 · cov(lo2,md»₁) · md - cov(lo1,hi2) · md»₁ - 1.5 · 
cov(lo1,md»₁) · hi1 - 1.5 · cov(lo1,md»₁) · hi2 + cov(lo1,md»₁) · md + 0.5 · lo2 · var(lo1) - 0.5 · md»₁ · var(lo1)

…

2AM Oscillator



Writing Models Compositionally
 Embedded chemical notation

Programs freely contain both chemical reactions and control flow
Can generate unbounded-size reaction networks

 Rich data types
numbers, species, functions, networks, lists, flows (time-courses)
flows are composable functions of time used in rates, plotting, and observation

 Modern abstractions
Functional: programs take data as parameters and produce data as results
Monadic: programs also produce effects (species, reactions, liquid handling)
Nominal: lexically scoped chemical species (species are not “strings”)
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Ex: Predatorial
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function Predatorial(number n) {
if n = 0 then

define species prey @ 1 M
prey -> 2 prey // prey reproduces
report prey
yield prey

else
define species predator @ 1/n M
species prey = Predatorial(n-1)
prey + predator ->{n} 2 predator // predator eats
predator -> Ø // predator dies
report predator
yield predator

end
}

species apexPredator = Predatorial(5)
equilibrate for 50

//======================================
// Creates a stack of predator-prey 
// relationships in Lotka-Volterra style,
// and returns the apex predator. 
//======================================

<= Demo: Predatorial



Mass Action Compiler
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 Lorenz chaotic attractor

∂x = s · y - s · x
∂y = r · x - x · z - y
∂z = x · y - b · z

s = 10
b = 8/3
r = 28
x₀ = 1
y₀ = 0
z₀ = 28

x⁺ + x⁻ -> Ø 
y⁺ -> y⁺ + x⁺ {10}
x⁻ -> x⁻ + x⁺ {10}
y⁻ -> y⁻ + x⁻ {10}
x⁺ -> x⁺ + x⁻ {10}
y⁺ + y⁻ -> Ø 
z⁺ + x⁻ -> z⁺ + x⁻ + y⁺ 
z⁻ + x⁺ -> z⁻ + x⁺ + y⁺ 
x⁺ -> x⁺ + y⁺ {28}
y⁻ -> y⁻ + y⁺ 
z⁻ + x⁻ -> z⁻ + x⁻ + y⁻ 
z⁺ + x⁺ -> z⁺ + x⁺ + y⁻ 
x⁻ -> x⁻ + y⁻ {28}
y⁺ -> y⁺ + y⁻ 
z⁺ + z⁻ -> Ø 
y⁻ + x⁻ -> y⁻ + x⁻ + z⁺ 
y⁺ + x⁺ -> y⁺ + x⁺ + z⁺ 
z⁻ -> z⁻ + z⁺ {2.667}
y⁺ + x⁻ -> y⁺ + x⁻ + z⁻ 
y⁻ + x⁺ -> y⁻ + x⁺ + z⁻ 
z⁺ -> z⁺ + z⁻ {2.667}

Initial:
x⁺ =1
x⁻ = 0
y⁺ = 0
y⁻ = 0
z⁺ = 28
z⁻ = 0

not mass action

<= Demo: LorenzAttractor

Hungarian criterion
violation
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Kaemika app - Integrating protocols and chemical simulation
Luca Cardelli. CMSB 2020.

Kaemika User Manual
http://lucacardelli.name/Papers/Kaemika%20User%20Manual.pdf

Integrated modeling
Of chemical reaction networks and protocols
How the Kaemika app supports it
Why it needs a new language for smooth integration

Closed-loop modeling, experimentation and analysis
For complete lab automation
To “scale up” the scientific method

Thanks to:
Gold (parser generator)
OSLO (ODE simulator)
C#/Xamarin (IDE)
App store reviewers

NO thanks to:
XAML (general obfuscator)
App store certificates
Dark mode support



Conclusions



Chemical reaction networks
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 A fun language to program with

 Compilable to real molecules

 Executable “in your kitchen”

 Still relative primitive, we need to build more programming abstractions


